10	B.T	T
E.	IN.	1.

Über symmetrische Kippschwingungen und ihre Synchronisierung

(Mitteilung aus dem Heinrich-Hertz-Institut für Schwingungsforschung.)

Von H. E. Hollmann, Berlin.

Einleitung.

Wegen einiger besonderer Eigentümlichkeiten, als welche die beliebig auszugestaltende Kurvenform und der sich daraus ergebende Reichtum an Harmonischen angeführt seien, nehmen die Relaxations- oder Kippschwingungen, wie sie z. B. die bekannte Blinkschaltung einer Glimmlampe liefert, eine besondere Stellung in der Schwingungstechnik ein und lassen sie für einige Sonderzwecke geeignet erscheinen. Hier sei nur hingewiesen auf die synchrone Ablenkung des Lichtflecks einer Braunschen Röhre, sei es zur Untersuchung von Schwingungsvorgängen¹) oder für die Zwecke des Fernsehens²), auf ein automatisches Nachhall- und Dämpfungsmeßverfahren³) oder aber auf die Synchronisierung zweier oder mehrerer Frequenzen in bestimmtem Verhältnis zueinander, welche z. B. von Mercier⁴) in 6 Kaskaden über einen Frequenzbereich von 1,5 · 108 erstreckt werden konnte.

Wird einem beliebigen schwingungsfähigen Gebilde eine fremde Sinusschwingung aufgedrückt, so wird es innerhalb eines begrenzten Bereichs von dieser äußeren Kraft mitgenommen und führt erzwungene Schwingungen aus. Diese als "Ziehen" und "Mitnahme" bekannte Erscheinung tritt auch bei Relaxationsschwingungen auf und ist von verschiedenen Seiten theoretisch und experimentell untersucht worden. So koppelt Leyshon⁵) eine Stimmgabel elektromagnetisch mit einer Blinkschaltung und entwickelt unter bestimmten Voraussetzungen eine Theorie, welche sich hauptsächlich auf die Phasenverhältnisse im Synchronisierungsbereich bezieht. Allgemeiner behandelt Hudec⁶) die erzwungenen Kippschwingungen, wobei er hinsichtlich der Phasenbeziehungen zu

1) M. Brenzinger: Arch f. El. 24, S. 80, 1930.

- ²) M. v. Ardenne: Fernsehen 1, S. 193, 1930.
- ³) H. E. Hollmann und Th. Schultes: ENT 8, 387, 1931.
- ⁴) M. Mercier: Comptes Rend. 174, S. 448, 1922.
- ⁵) W. A. Leyshon: Phil. Mag. 4, S. 305, 1927.
- ⁶) A. Hudec: Arch. f. El. 22, S. 459, 1928.

ähnlichen Ergebnissen kommt, doch erstreckt sich seine Theorie nicht nur auf den Fall, daß die eingeführte Wechselfrequenz und die erzwungene Kippfrequenz unmittelbar gleich sind, sondern, wie es bei dem obigen Versuch Merciers der Fall ist, in einem beliebigen ganzzahligen Verhältnis zueinander stehen.

Durch den vollkommen unsymmetrischen Verlauf der Kippschwingungen einer Glimmlampe in Blinkschaltung, wobei die Entladezeit des Energiespeichers gegenüber der Ladezeit meist vernachlässigbar kurz ist, wird die Betrachtung der Synchronisierungsverhältnisse sehr erschwert. Weitaus

Abb. 1. Symmetrische Röhrenkippschaltung von Frühauf.

einfacher sind die Vorgänge bei symmetrischen Kippschwingungen, wie sie z. B. der bekannte Multivibrator von Abraham und Bloch7) liefert, zu übersehen. Dies hat seine Ursache in erster Linie darin, daß ebenso wie bei der eingeführten sinusförmigen Synchronisierungskraft auch die positiven und negativen Amplituden der Kippschwingung um genau 180 Grad phasenverschoben sind. An Übersichtlichkeit und Einfachheit der theoretischen Behandlung ist dem Multivibrator eine von Frühauf erstmalig beschriebene Kippschaltung zweier Elektronenröhren überlegen⁸), welche aus dem Multivibrator dadurch entstanden gedacht werden kann, daß die Widerstands-Kapazitäts-Kopplungen beider Röhren durch eine Gleichstromkopplung über getrennte Abriegelungsbatte-

8) W. Frühauf: Arch. f. El. 21, S. 471, 1927.

⁷) F. Abraham und Bloch: Ann. de Phys. **12**, S. 237, 1919.

450	E. N. T.		
Band 8	Hollmann: Über symmetrische Kinnschwingungen und ihre Synchronisierung	Heft 10	1931

rien ersetzt werden. Dadurch wird die statische Aufnahme der Kippspannungen und des Kippdiagramms genau so wie bei der Glimmlampe möglich. In der Abb. I ist die Schaltung Frühaufs dargestellt, und ihre Wirkungsweise sei zunächst eingehend behandelt mit dem Ziel, aus den Dimensionen der Schaltelemente und den Röhrenkennlinien das Kippdiagramm zu konstruieren und die Kippfrequenz zu bestimmen.

I. Die Wirkungsweise der symmetrischen Kippschaltung.

Die Schaltung besteht aus dem Kondensator Cals Energiespeicher und den beiden gegeneinandergeschalteten Röhren R_1 und R_2 mit ihren getrennten Heizbatterien und Anodenspannungen E_{a_1} und E_{a_2} . Im Anodenkreis jeder Röhre liegt zwischen Kathode und Anodenbatterie ein Widerstand W_1 und W_2 , dessen Spannungsabfall jeweils dem Gitter der anderen Röhre R_2 oder R_1 zugeführt wird. Durch diese Maßnahme sind beide Röhren über die Beziehung:

$$E_{g_1} = I_{a_2} \cdot W_2$$
 und $E_{g_2} = I_{a_1} \cdot W_1$ (1)

miteinander gekoppelt. Tritt daher z. B. in der Röhre I ein Anodenstrom auf, so erhält die Röhre 2 ein negatives Gitterpotential, wobei, wie aus den späteren Betrachtungen noch genauer folgen wird, die Verhältnisse so bemessen sein müssen, daß für maximales I_{a1} , d. h. für den bei E_{g1} gleich Null auftretenden Grenzwert des Anodenstroms, die Gitterspannung der Röhre 2 so stark negativ wird, daß ihr Strom vollkommen auf Null absinkt, was natürlich analog auch hinsichtlich I_{a1} gilt.

Unter dieser Voraussetzung erklärt sich die Wirkungsweise der Schaltung folgendermaßen: Zunächst sei Röhre I geschlossen, d. h. ihre Gitterspannung sei Null, so daß nach der Voraussetzung die Röhre 2 offen, d. h. durch den negativen Spannungsabfall an W_1 abgeriegelt ist. Nunmehr wird der Kondensator von der Batterie E_{a1} über die Röhre I und W_1 aufgeladen. Damit nimmt aber der Ladestrom und damit auch E_{g2} exponentiell ab bis zu dem Punkt, an dem in der abgeriegelten Röhre 2 ein Anodenstrom zu fließen beginnt. Dieser verschiebt seinerseits das Gitterpotential der Röhre I ins Negative, wodurch eine weitere Abnahme von I_{a1} herbeigeführt wird, so daß die absinkende Gitterspannung E_{g2} wiederum ein Ansteigen von I_{a_2} bewirkt und so fort. Man erkennt, daß der Punkt, an dem in der jeweils abgeriegelten Röhre der Strom einzusetzen beginnt, labil ist und die Kippung einleitet. Während des Kipprozesses schließt sich dann die Röhre 2 vollkommen, während die Röhre 1 geöffnet wird. Nach der Kippung liegen also die Verhältnisse gerade umgekehrt wie zu Beginn der Betrachtung, und der Vorgang kann sich ganz analog in umgekehrter Richtung abspielen, nur mit dem Unterschied, daß sich der Kondensator nicht mehr von der Spannung Null an auflädt, sondern jetzt durch die Batterie E_{a_2} umgeladen wird; nach dem Einschwingen der ersten Halbperiode findet die Umladung natürlich in gleicher Weise in beiden Richtungen statt. Dadurch unterscheidet sich die vorliegende Schaltung von der Glimmlampenblink-

Abb. 2. Diagramm der symmetrischen Kippschwingungen.

schaltung, daß "Zünd- und Löschspannung" V_1 und V_2 entgegengesetztes Vorzeichen haben, und daß infolgedessen die Kondensatorspannung V_c , wie aus dem Diagramm der Abb. 2 zu ersehen ist, zwischen diesen beiden Werten um das Nullpotential hin und her schwankt; weil "Lade- und Entladevorgang" vollständig gleichwertig geworden sind, müssen auch die Schwingungen völlig symmetrisch sein.

Um die Arbeitsweise der Schaltung an Hand der Röhrenkennlinien, welche offenbar den Kippprozeß in erster Linie bestimmen, näher zu betrachten, um vor allem die Höhe der Kippspannungen V_1 und V_2 aus den elektrischen Daten der Anordnung zu bestimmen, ist zu beachten, daß das Anodenpotential V_{a1} und V_{a2} beider Röhren nicht unmittelbar gleich der konstanten Batteriespannung E_a , sondern um den Momentanwert der Kondensatorspannung V_c vermehrt oder vermindert ist, was durch die Beziehung:

F	NI	T
Ŀ.	IN.	1.

1931 Heft	10	Hollmann: Über	symmetrische	Kippschwingungen	und ihre	Synchronisierung.	Band
-----------	----	----------------	--------------	------------------	----------	-------------------	------

 $V_{a1} = E_{a1} + V_c$ und $V_{a2} = E_{a2} - V_c$ (2) zum Ausdruck kommt. Neben den Gitterspannungen sind also auch die Anodenpotentiale variabel, welchem Umstand durch Einführung des Kennlinienfeldes beider Röhren Rechnung zu tragen ist.

So ergibt sich aus der durch Gleichung (I) dargestellten wechselseitigen Verkettung das Kennliniendiagramm der Abb. 3, welches im Interesse der Deutlichkeit nur qualitativ und unter der Voraussetzung völliger Symmetrie auf beiden Seiten der Schaltung gezeichnet ist. Nach Gleichung (2) gehören darin jeweils solche Kurven aus beiden Kennlinienscharen zueinander, deren Parameter sich um gleiche Beträge Vc nach positiven und negativen Werten von der Anodenruhespannung von 200 Volt unterscheiden. Verschiebt sich nun infolge des Anwachsens der Kondensatorspannung die Charakteristik der Röhre I in dem horizontalen Kennlinienfeld nach rechts, so nimmt mit Ia1 nicht nur die negative Vorspannung der Röhre 2, welche ja durch den Abschnitt auf der Ordinatenachse dargestellt wird, ab, sondern es kommt dieser Bewegung die Kennlinie der Röhre 2 in dem vertikalen Kennlinienfeld, dessen Parameter ja zunimmt, von unten entgegen, bis der labile Punkt I, an welchem sich beide Kurven schneiden und bei der kritischen Gitterspannung E_{g20} der Strom I_{a2} einsetzt, erreicht wird. Hier beginnt die Kippung, deren oberer Grenzpunkt 2 dadurch festgelegt ist, daß E_{g_2} nur bis zum Nullwert absinken, nicht aber positives Vorzeichen annehmen kann. Weil der Kippprozeß in einer gegen die Periodendauer zu vernachlässigenden Zeit vor sich geht, bleibt das Kondensatorpotential Ve und damit auch das Anodenpotential V_a konstant, weshalb der Endpunkt 2 auf der gleichen Kennlinie wie Punkt I liegen muß. Nunmehr findet die Umladung des Kondensators statt, und die Kennlinien verschieben sich in umgekehrter Richtung gegeneinander, bis wiederum im Punkt 3 ein Strom in der Röhre I einsetzt und die Kippung analog bis zum Punkt 4 erfolgt, worauf sich der Kondensator von neuem bis zum labilen Ausgangspunkt I der Betrachtung umlädt. Man erkennt, wie auf diese Weise in beiden Kennlinienfeldern die durch die verschiedenen Schraffuren bezeichneten und durch die Punkte I bis 4 begrenzten Flächen zyklisch umschrieben werden.

Streng genommen setzt die vorstehende Betrach-

tung über die Labilität der Kippunkte I und 3 voraus, daß die dynamischen Röhrenkennlinien in ihrem unteren Teil keine merkliche Krümmung aufweisen, sondern sich steiler von ihrer Abszissenachse abheben, als der Neigung der gegenlaufenden Kennlinie gegenüber derselben Achse entspricht, wie dies auch in dem Diagramm der Abb. 3 berücksichtigt ist. Andernfalls setzt die Kippung nicht bei der für das erste Auftreten eines Anodenstroms kritischen Gitterspannung E_{g0} ein, sondern erst bei einer geringeren Spannung E_{g0}' , bei welcher die Neigungen beider Röhren einander gleich geworden sind bzw. bei der die Charakte-

451

Abb. 3. Der Verlauf der Kippschwingungen in den Röhrenkennlinienfeldern.

ristik der geschlossenen Röhre die der gesperrten eben tangiert. Es hat sich jedoch gezeigt, daß bei den praktisch in Frage kommenden Anodenwiderständen die dynamischen Röhrenkennlinien so weit abgeflacht werden, daß obige Voraussetzung für die Labilität der Kippunkte I und 3 völlig gerechtfertigt ist.

Ferner tritt offenbar die Kippung nur unter der bereits zu Anfang kurz erwähnten Bedingung ein, daß die vom Maximalwert des Anodenstroms I_{a0} in der geschlossenen Röhre an den Widerständen W hervorgerufenen Spannungsabfälle so groß sind, daß die andere Röhre vollkommen abgeriegelt ist. Anderseits ergeben sich aus dieser Bedingung für die Widerstände W_1 und W_2 Grenzwerte, unterhalb deren die Anordnung stabil ist und keine Kippung mehr auftreten kann. Aus dem Kennliniendiagramm ergeben sich diese Grenzwerte zu:

$$W_1 = \frac{E_{g_2 0}}{I_{a_1 0}} \text{ und } W_2 = \frac{E_{g_1 0}}{I_{a_2 0}}.$$
 (3)

II. Konstruktion des Kippdiagramms und Berechnung der Relaxationsfrequenz.

Ersetzt man die Kondensatorspannung V_e durch eine mittels eines Potentiometers beliebig einzuregulierende Spannung V, so lassen sich die beiden

Abb, 4. Das Kippdiagramm.

Kippspannungen V_1 und V_2 auf ebensolche Weise wie bei einer Glimmlampe messen. Trägt man die Anodenströme I_{a1} und I_{a2} als Funktion von V auf, so erhält man das in Abb. 4 dargestellte Kippdiagramm. Es läßt sich bei gegebenen Röhrenkennlinien und Widerständen W auf Grund folgender Überlegung auf einfache Weise graphisch konstruieren:

Die obere und untere Begrenzungslinie des Kippdiagramms wird gebildet aus der Arbeitskennlinie $I_a = f(V)$, welche sich aus der dynamischen Kennlinienschar abgreifen läßt. Das die Kippunkte I und 3 bestimmende Einsetzen des Anodenstroms in der abgeriegelten Röhre wird durch die gestrichelte Gerade in das Diagramm eingeführt, welche die kritische Gitterspannung E_{g_0} , welche ebenfalls aus dem Kennliniendiagramm zu entnehmen ist, als Funktion von V darstellt, und wobei sich

der Ordinatenmaßstab wiederum nach Gleichung (1) aus W und I_a bestimmt. Die Kippunkte I und 3 ergeben sich dann als Schnittpunkte dieser Geraden mit den Arbeitskennlinien, während die oberen Kipppunkte 2 und 4 durch die den Schnittpunkten I und 3 zugeordneten Ordinaten auf den Arbeitskennlinien abgegriffen werden. Es zeigt sich eine weitgehende Übereinstimmung der solchermaßen konstruierten mit den experimentell aufgenommenen Diagrammen. Legt man die Kondensatorspannung V_e an die Ablenkplatten einer Braunschen Röhre, während man die Ablenkung durch den Kondensatorstrom auf magnetischem Wege oder durch den Spannungsabfall an einem dem Kondensator vorgeschalteten Widerstand vornehmen läßt, so erhält man auf dem Schirm das Kippdiagramm, von dem die Abb. 5a eine Aufnahme wiedergibt. In der Abb. 5b ist schließlich eine Aufnahme der Kondensatorspannung mit bewegter Platte wiedergegeben, welche die symmetrische Dreiecksform der Kippschwingung erkennen läßt.

Zur Berechnung der Kippfrequenz einer Glimmlampenblinkschaltung wurde von Righi⁹) die Gleichung angegeben:

$$T = W \cdot C \ln \frac{E - V_2}{E - V_1} + R_i \cdot C \ln \frac{V_1}{V_2}, \quad (4)$$

worin sich der erste Ausdruck auf die Lade- und der zweite auf die Entladeperiode bezieht, und worin W den dem Kondensator vorgeschalteten Ladewiderstand, C die Kapazität, E die Ladespannung, V_1 und V_2 die Zünd- und Löschspannung und R_i den inneren Widerstand der Glimmlampe bedeuten.

Für die symmetrische Röhrenkippschaltung mit gleicher Lade- und Entladeperiode ist in obiger Formel lediglich die verschiedene Polarität von V_1 und V_2 sowie der gegen den Ladewiderstand Wnicht mehr zu vernachlässigende innere Röhrenwiderstand R_i zu berücksichtigen, so daß man für die volle Periodendauer T erhält:

$$T = 2 \cdot C (W + R_i) \ln \frac{E + V_2}{E - V_1}.$$
 (5)

Die Kippspannungen V_1 und V_2 können aus dem Kippdiagramm abgegriffen werden, lassen sich jedoch bei gegebenen Röhrendaten auf folgende Weise leicht errechnen.

⁹) A. Righi: Rend. d. Ac. de Bol. 1902, S. 184.

452

		E. N. T.	453
1931	Heft 10	Hollmann: Über symmetrische Kippschwingungen und ihre Synchronisierung.	Band 8

Offenbar stellt das auf der Abszissenachse der Abb. 3 mit $d E_g$ bezeichnete Stück die im Maßstab des Parameters, d. h. der Anodenspannung auf die Abszisse übertragene Kippspannung V dar. Seine Größe folgt aus den der gegebenen dynamischen Kennlinie zu entnehmenden Werten für die kritische Gitterspannung E_{g0} und den Anodenruhestrom I_{a0} zu:

$$d E_g = I_{a0} \cdot W - E_{g0} - D \cdot V. \tag{6}$$

Die Umrechnung von $d E_g$ auf den Parameter $d E_a = V$ geschieht in dem stark schraffierten Dreieck der Abb. 3, dessen Winkel α aus der Steilheit der dynamischen Röhrenkennlinie bekannt, und dessen eine Kathete ebenfalls gleich $D \cdot V$ ist und ergibt:

$$\tan \alpha = S_{\rm dyn} = \frac{d I_a}{D \cdot V} = \frac{d E_g}{W D V},$$

woraus sich $d E_g$ zu $d E_g = S_{dyn} W \cdot D \cdot V$ ergibt. Dies in Gleichung (6) eingesetzt, ergibt:

$$V = \frac{I_{a_0} W - E_{g_0}}{D(1 + SW)}.$$
 (7)

Für die dem Kippdiagramm der Abb. 4 zugrunde liegende Röhrentype RE 504 erhält man aus ihren dynamischen Kennlinien bei einem Belastungswiderstand von $3 \cdot 10^4$ Ohm die folgenden Daten:

$$I_{a_0} = 4.2 \text{ mA},$$

$$E_{g_0} = 4 \text{ t V},$$

$$D = 23^{0}/_{0},$$

$$S_{\text{dyn}} = 0, \text{ t 17 mA/V}.$$

Hierfür erhält man aus Gleichung (7) eine Kippspannung V von 81,6 Volt, die mit den aus dem Kippdiagramm graphisch ermittelten Werten, soweit es die Genauigkeit der zeichnerischen Darstellung zuläßt, übereinstimmt. Für die weiteren Bestimmungsstücke des Kippdiagramms, nämlich $E_{a_1} = E_{a_2} = 190$ Volt erhält man bei einem mittleren inneren Röhrenwiderstand R_i von 12 · 10³Ohm und einer Kapazität von 0,024 · 10-6 Farad aus Gleichung (5) eine Kippfrequenz von 521 Hz, welche durch Vergleich mit einem Überlagerungssummer bis auf etwa 10/0 genau nachgeprüft werden konnte. Im Vergleich zu der Kippfrequenz einer Glimmlampe ist dieser Fehler, der zudem auch durch die begrenzte Meßgenauigkeit des Röhrensummers verursacht ist, als gering zu bezeichnen.

Aus Gleichung (7) ist zu entnehmen, in welcher Weise die Kippspannung von dem Widerstand W und den durch die dynamische Röhrenkennlinie gegebenen Werten I_{a_0} , E_{g_0} , S und D abhängt. Während aber E_{g_0} und D unabhängig von W sind, gilt dies nicht für die beiden übrigen Größen, denn sowohl der Ruhestrom I_{a_0} als auch die dynamische Steilheit S sind ihrerseits wieder eine

Abb. 6. Kippschaltung mit Potentiometerregulierung.

Funktion von W, weshalb die Gleichung (7) die Funktion V = f(W) noch nicht eindeutig wiedergibt. Diese Schwierigkeit kann jedoch auf einfache Weise beseitigt werden, wenn man lediglich $\frac{E_g}{I_a} = W$ variiert, ohne dadurch die dynamische Kennlinie selbst zu beeinflussen, was praktisch dadurch erzielt wird, daß die Gitterspannung E_g

Abb. 7. Die Kippspannung als Funktion des Potentiometerwiderstands.

nicht am Endpunkt des Widerstands W, sondern an einem verschiebbaren Schleifkontakt abgegriffen wird, wie aus dem Schaltbild der Abb. 6 zu ersehen ist. In diesem Schema ist gleichzeitig an Stelle des Kondensators C die zur Aufnahme der Kippspannungen und des Kippdiagramms dienende Potentiometeranordnung mit eingezeichnet. Nunmehr ist für W nur der zwischen Kathode und Schleifer liegende Teilwiderstand in die Gleichung (7) einzusetzen, wohingegen der gesamte Potentiometerwiderstand W' lediglich bei der Konstruktion und Auswertung der dynamischen Kennlinie, d. h. bei der Bestimmung von S und $I_{\alpha 0}$

454	E. N. T.		
Band 8	Hollmann: Über symmetrische Kippschwingungen und ihre Synchronisierung.	Heft 10	1931

eine Rolle spielt. Auf Grund dieser praktischen Vereinfachung ist für das obige Beispiel der Verlauf von V als Funktion von W errechnet und in Abb. 7 graphisch dargestellt. Die Kurve gibt an, in welcher Weise V mit abnehmendem Widerstand W absinkt, und zwar ausgehend von dem Gesamtwiderstand W' von 30 · 103 Ohm, um bei dem durch Gleichung (3) zu 9,75 · 10³ Ohm bestimmten Grenzwiderstand zu Null zu werden. Während im Bereich hoher Kippspannungen die berechneten Werte mit den gemessenen genau übereinstimmen, machen sich bei kleineren Spannungen V praktisch nicht ganz zu vermeidende Unsymmetrien, wie sie z. B. durch die verschiedene Krümmung der Röhrenkennlinien verursacht werden, immer stärker bemerkbar.

III. Die Synchronisierungsbereiche.

Wird unmittelbar vor dem Kondensator C eine Gleichspannung in die Kippschaltung eingeführt, so macht sich dieses in einer Vertikalverschiebung des ganzen Kippdiagramms bemerkbar, indem die eine Kippspannung um den Gleichspannungsbetrag vergrößert, die andere um denselben Betrag vermindert wird, ohne daß eine Änderung der Kippfrequenz selbst stattfindet. Wird die Gleichspannung aber durch eine Wechselspannung ersetzt, so sind die um 180 Grad phasenverschobenen Kippspannungen mit den eingeführten Wechselspannungen vektoriell zu addieren. An anderer Stelle ist dargelegt, wie sich unter diesen Umständen in der Glimmlampenblinkschaltung für eine konstante Wechselspannung ein oberer und unterer Grenzwert der Kippfrequenz ergibt, welche die Grenzen des Synchronisierungsbereichs, innerhalb dessen die Kippfrequenz von der eingeführten Fremdfrequenz mitgezogen wird, darstellen¹⁰). Für die symmetrische Kippschaltung sind diese beiden, sich durch eine Phasendrehung von 180 Grad unterscheidenden Grenzzustände in den Diagrammen der Abb. 8a und c dargestellt, während in der Mittellage der Abb. 8b, d. h. bei einer Phasenverschiebung der Synchronisierungsspannung um 90 Grad, keine Beeinflussung der Kippfrequenz stattfindet. Wird daher die Frequenz der eingeführten Wechselspannung unter Konstanthaltung ihrer Amplitude stetig erhöht, so setzt die Synchronisierung bei der unteren Grenzfrequenz n1 ein, dann folgt die Kippschwingung

¹⁰) H. E. Hollmann: ENT 6, S. 253, 1929.

exakt der Synchronisierungsfrequenz unter stetiger Drehung des Phasenwinkels φ , bis bei $\varphi = 180$ Grad die obere Grenzfrequenz n_2 erreicht wird, die Kippschwingungen außer Tritt fallen und in den von Hudec als wilde Schwingungen bezeichneten unstabilen Schwingungszustand übergehen. Offensichtlich ist die untere und obere Grenzfrequenz von der Höhe der eingeführten Wechselspannung abhängig, und die Breite des Synchronisierungsbereichs wird mit wachsender Spannungsamplitude zunehmen.

Abb. 8. Graphische Darstellung der Synchronisierung bei verschiedenen Phasenwinkeln φ .

Es liegt nahe, die in der Abb. 8 für den Fall, daß die Relaxationsfrequenz angenähert mit der Fremdfrequenz übereinstimmt, angestellten Betrachtungen auf höhere Synchronisierungsfrequenzen anzuwenden, wobei analoge Synchronisierungsvorgänge auch in den ganzzahligen Vielfachen der Grundschwingung zu erwarten sind. In der Tat findet eine durch die Grenzen n_1 und n_2 gekennzeichnete Synchronisierung nach Abb.9a wieder statt, wenn das Frequenzverhältnis n z. B. 3, 5, 7 . . . usw. beträgt; betrachtet man indessen die geradzahligen Verhältnisse, z. B. n = 2 in Abb. 9b, so erkennt man, daß sich nunmehr die Wechselspannung in ihrer Wirkung auf die Re-

E. N. 1.	
 Hollmann: Über symmetrische Kippschwingungen und ihre Synchronisierung.	Ban

laxationsfrequenz wie eine Gleichspannung verhält, indem sie zwar die Absolutbeträge von V_1 und V_2 verändert, ohne aber den Betrag der Kippspannung des Kondensators selbst, der ja

Abb. 9. Die Synchronisierung im Bereich a) ungeradzahliger und b) geradzahliger Vielfacher der freien Kippfrequenz.

für die Frequenz ausschlaggebend ist, zu beeinträchtigen. Es ist daraus zu schließen, daß in den Bereichen geradzahliger Oberschwingungen der freien Relaxationsfrequenz überhaupt keine Synchronisierung mehr möglich ist.

Rechnerisch lassen sich die Verhältnisse leicht erfassen, wenn in Gleichung (5) den Kippspannungen V_1 und V_2 die Synchronisierungsspannung $e_0 \cos (\omega t + \varphi)$ überlagert wird. So ergibt sich für die synchronisierte Periodendauer T_c die Beziehung:

$$T_{s} = 2 \cdot C \left(W + R_{i}\right) \ln \frac{E + V_{2} + e_{0} \cos \left(\omega t + \varphi\right)}{E - V_{1} + e_{0} \cos \left(\omega t + \varphi + \frac{\omega t}{2}\right)}, \quad (8)$$

wobei die Gegenphase der Wechselspannung e₀

im unteren und oberen Kippunkt statt durch Umkehr des Vorzeichens allgemein durch den Phasenwinkel $\frac{\omega t}{2}$ zum Ausdruck gebracht wird. Ferner ist innerhalb des Synchronisierungsbereichs ωt gleich $n 2\pi$, woraus sich für T_s nun-

mehr die Gleichung ergibt:

 $\frac{455}{d 8}$

Ersichtlich gibt die Gleichung (9) für die Grenzwerte von $\varphi = 0^{\circ}$ und 180° die obere und untere Grenzfrequenz als Funktion der Scheitelspannung e_0 , während sich bei konstanter Spannung e_0 alle möglichen Zwischenwerte als Funktion des Phasenwinkels φ ergeben. Je nachdem indessen, ob *n* gerad- und ungeradzahlig ist, erhält man verschiedene Frequenzwerte, wie die für das oben behandelte Beispiel einer freien Relaxationsfrequenz von 521 Hz und für eine konstante Wechselspannung von 11,5 Volt errechneten und in der folgenden Tabelle zusammengestellten Grenzfrequenzen erkennen lassen.

n	1,3,5	2, 4, 6
Untere Grenzfrequenz v_1,\ldots, v_n	437	476 Hz
Obere Grenzfrequenz v_2	611	549 Hz
φ Synchronisierungsbereich $\varDelta v$	180 174	o Grad 73 Hz

Während sich also für die ungeradzahligen Vielfachen n die Synchronisierungsbereiche über 174 Hz erstrecken, haben sie sich für die geradzahligen n-Werte auf 73 Hz zusammengezogen.

In der Abb. 10 sind die experimentell ausgemessenen Synchronisierungsbereiche wiedergegeben, wobei als Abszisse die Synchronisierungsfrequenz und als Ordinaten die erzwungene Kippfrequenz aufgetragen ist; die gestrichelten Horizontalen geben die der Gleichung (9) entsprechenden Grenzfrequenzen an. Bei den ungeradzahligen Oberschwingungen ist die Übereinstimmung zwischen Experiment und Rechnung recht gut, während in den geradzahligen Bereichen die experimentellen Werte hinter den theoretischen zurückbleiben.

Nach den an die Darstellung der Abb. 8b an-

456	E. N. T.			
Band 8	Hollmann: Über symmetrische Kippschwingungen und ihre Synchronisierung.	Heft	10	1931

geknüpften Betrachtungen ist eigentlich zu erwarten, daß die geradzahligen Synchronisierungsbereiche sich auf einen Punkt, nämlich die freie

Relaxationsfrequenz, zusammenziehen. Offenbar wird diese theoretische Forderung indessen nicht erfüllt, und das hat seine Ursache in einer geringen Abweichung der Schwingungsform von der theoretischen Dreieckskurve, die nur dann absolut rein erhalten wird, wenn die Batteriespannung E sehr groß gegenüber den Kippspannungen und der Synchronisierungsspannung ist, in welchem Fall nämlich auf einem vollkommen linearen Teil der Kondensatorladekurve gearbeitet wird. Nur unter dieser Voraussetzung verschwinden die geradzahligen Synchronisierungsbereiche tatsächlich.

Wie die in der Tabelle für den Phasenwinkel φ mitange-

a) n = 1.

die Synchronisierungsfrequenzen innerhalb der Grenzen v_1 und v_2 bekannt sind, läßt sich der Verlauf des Phasenwinkels innerhalb der Synchronisierungs-

bereiche aus Gleichung (9) errechnen. Durch Beobachtung mit der Braunschen Röhre konnten die theoretischen Phasenbeziehungen bestätigt werden. Wurde nämlich an das eine Ablenkplattenpaar die Synchronisierungsspannung $e_0 \cos(\omega t)$, an das andere aber die erzwungene Relaxationsfrequenz gelegt, so ergaben sich für n = 1, 2 und 3 die in den Abb. 11a bis c wiedergegebenen Bilder, welche deutlich die Phasendrehung zwischen oberer und unterer Grenzfrequenz erkennen lassen, und zwar für n = 1und 3 um 180 Grad, wogegen für n = 2 der Phasenwinkel offensichtlich wesentlich geringer ist. Neben diesen Phasenbeziehungen zeigen die Oszillo-

b) n = 2. Abb. 11. Oszillogramme der Grenzfrequenzen bei n = 1, 2 und 3.

gebenen Werte erkennen lassen, ändert sich dieser in den ungeradzahligen Oberschwingungsbereichen von 0 bis 180 Grad, um die geradzahligen Bereiche dann in umgekehrtem Sinne zu durchlaufen. Da gramme a und c auch deutlich das Zusammenziehen der Schwingungsamplitude auf der Abszisse von 2 V_1 auf 2 V_2 , während im Fall b die Schwingungsamplitude der oberen und unteren Grenzfrequenz

Lieit 10 Hollmann: Über symmetrische Kippschwingungen und ihre Synchronisierung.	Ban	d
--	-----	---

nahezu unverändert ist, wie es mit den vorhergehenden Betrachtungen in voller Übereinstimmung steht.

Außerhalb der Synchronisierungsbereiche treten unbestimmbare Kippfrequenzen auf, die den von Hudec als "wilde" und "zyklische" Schwingungen bezeichneten Vorgängen entsprechen und auf dem Schirm der Braunschen Röhre recht verwickelte Bilder ergeben. Als Beispiel seien in der Abb. 12 zwei zwischen n = 1 und 2, sowie

Abb. 12. Wilde Schwingungen im Oszillogramm.

zwischen n = 2 und 3 aufgenommene Oszillogramme wiedergegeben, deren Analyse äußerst kompliziert sein dürfte und unter dem vorliegenden Thema nicht von Interesse ist.

IV. Frequenzdemultiplikation.

Während bei den bisherigen Versuchen die freie Relaxationsfrequenz unverändert belassen und nur die eingeführte Wechselfrequenz variiert wurde, kann man die Synchronisierung ebensogut umkehren, indem bei konstanter Synchronisierungsfrequenz die Relaxationsfrequenz verändert wird, ein Vorgang, den v. d. Pol und v. d. Mark¹¹) als "Frequenzdemultiplikation" bezeichnen. Die Abb. 13 gibt bei den vorliegenden symmetrischen Kippschwingungen den Vorgang im Experiment wieder, wobei als Abszisse die Kapazität des Kondensators C und als Ordinate die Relaxationsfrequenz aufgetragen ist. Während die mittlere Kurve den Verlauf der freien Relaxationsfrequenz als Funktion der Kapazität *C* darstellt, treten bei Einführung einer konstanten Wechselfrequenz von 2220 Hz die horizontalen

457

Synchronisierungsbereiche auf, welche wieder je nach ihren gerad- oder ungeradzahligen Ordnungszahlen verschiedene Ausdehnungen aufweisen. Bei den unsymmetrischen Kippschwingungen, wie sie v. d. Pol und v. d. Mark benutzten, treten diese Unterschiede naturgemäß nicht auf.

Zusammenfassung.

Es wird die Wirkungsweise einer von Frühauf angegebenen Röhrenschaltung für symmetrische Kippschwingungen eingehend behandelt. Ausgehend von den Röhrenkennlinien und den übrigen Bestimmungsstücken der Schaltung wird das Kippdiagramm konstruiert sowie die Relaxationsfrequenz und die Kippspannungen berechnet.

Durch eine in die Kippschaltung eingeführte Wechselspannung veränderlicher Frequenz werden die Relaxationsschwingungen innerhalb begrenzter Bereiche synchronisiert, deren Ausdehnung verschieden ist, je nachdem das Verhältnis zwischen Kipp- und Synchronisierungsfrequenz gerad- oder ungeradzahlig ist. Die Ursachen für diese Abweichung werden graphisch und rechnerisch angegeben und die Ergebnisse durch oszillographische Aufnahmen mit der Braunschen Röhre bestätigt. Die analoge Erscheinung zeigt sich bei der "Frequenzdemultiplikation".

Der Notgemeinschaft der Deutschen Wissenschaft, welche mir die vorliegenden Untersuchungen ermöglichte, bin ich zu großem Dank verpflichtet; ferner danke ich Herrn H. Schultes für seine Unterstützung bei den Messungen.

(Eingegangen am 27. Januar 1931.)

¹¹⁾ v. d. Pol und v. d. Mark: Nature 3919, S. 364, 1927.